Fabrication of electrochemical bio-sensors for the detection of glucose and hydrazine using ZnO nanonails grown by the thermal evaporation process

نویسندگان

  • A. Umar
  • S. H. Kim
  • J. H. Kim
  • Y. K. Park
  • Y. B. Hahn
چکیده

Well-crystallized zinc oxide nanonails have been synthesized in a large quantity via a thermal evaporation method using the metallic zinc powder without the use of any metal catalyst or additives. The detailed structural and optical characterizations confirmed that the as-synthesized nanonails are single-crystalline with the wurtzite hexagonal phase, grown along the [0001] direction and possessing a good optical properties. For applications point of view, the as-grown ZnO nanonails were used as supporting matrixes for enzyme immobilization, glucose oxidase (GOx), to construct efficient glucose biosensors. The ZnO nanonails have a high surface area and presenting themselves as an efficient electron conducting tunnel, so the GOx attached to the surfaces of ZnO nanonails had more spatial freedom in its orientation, which facilitated the direct electron transfer between the active sites of immobilized GOx and electrode surface. A high sensitivity, 24.613 μA cm mM, with a response time less than 10s was achieved from the fabricated glucose biosensor. The biosensor shows a linear range from 0.1 to 7.1 mM with a correlation coefficient of R= 0.9937 and the detection limit of 5 μM. Moreover, the detection of hydrazine was performed in a phosphate buffer (pH 6.6). The peak current increases linearly with the concentration of hydrazine from 0.01 to 1mM. This work demonstrates that the ZnO nanostructures can be utilized as an efficient electron mediator to fabricate efficient biosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-Doped ZnO Hexagonal Stepped Nanorods and Nanodisks as Potential Scaffold for Highly-Sensitive Phenyl Hydrazine Chemical Sensors

Herein, we report the growth of In-doped ZnO (IZO) nanomaterials, i.e., stepped hexagonal nanorods and nanodisks by the thermal evaporation process using metallic zinc and indium powders in the presence of oxygen. The as-grown IZO nanomaterials were investigated by several techniques in order to examine their morphological, structural, compositional and optical properties. The detailed investig...

متن کامل

INKJET DEPOSITED SILVER NANOPARTICLE ELECTRODES

Silver nanoparticles are being given considerable attention because of their interesting properties and potential applications. One such exploitable use is as the major constituent of conductive inks and pastes used for printing various electronic components. This paper presents a novel direct-writing process for fabrication of the first deposited silver nanoparticles (AgNPs) (50-200nm) elec...

متن کامل

Fabrication of Ultraviolet Photodetector Based on ZnO Nanostructures and Calcium Impurities Using Sol-Gel Method

In this paper an ultraviolet (UV) photodetector has been fabricated using ZnO nanostructures. The cheap fabrication process, high-quality nanostructures and the desired results for the photodetector are the most important characteristics of the proposed method. ZnO nanostructures have been grown using sol-gel method. In order to increase the sensitivity, calcium impurities have been added to na...

متن کامل

Fabrication of Highly Ordered Gold Nanorods Film Using Alumina Nanopores

A simple method for fabrication of highly ordered gold nanorod film is introduced in this article. The procedure is based on thermal evaporation of gold into a porous anodic alumina film (PAA). The PPA film was fabricated by combining the hard and mild anodization. This combination effectively decreases the processing time of fabrication of highly ordered porous anodic alumina film with c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007